

SYSTEM DATA

IDA^e Hardware Configurations for PULSE — Types 3560-B, 3560-C, 3560-D and 3560-E

PULSE[™] is a versatile, task-oriented sound and vibration analysis system. It provides the platform for a range of PC-based measurement solutions from Brüel & Kjær. A PULSE system consists of a PC with LAN interface, PULSE software, Microsoft[®] Windows[®] operating system, Microsoft[®] Office, and data acquisition front-end hardware. Up to 10 front-ends can be combined into one measurement system with more than 300 input channels.

This System Data describes the hardware available for Data Acquisition Front-ends Types 3560-B, C, D and E.

PULSE Software as well as PULSE Pocket Analyzer Type 3560-L and the PULSE Lite software are described separately.

USES AND FEATURES

USES

- Multiframe systems comprising up to 10 front-ends with synchronous sampling between front-ends for real-time measurements on more than 300 channels:
 - Type 3560-B: 5 input and 1 output channel
 - Type 3560-C: 2 modules. Up to 17 input and/or 3 generator output channels
 - Type 3560-D: 7 modules. Up to 65 input and/or 10 generator output channels
 - Type 3560-E: 10 modules. Up to 96 input and/or 16 generator output channels)
- Signal and system analysis using all PULSE application packages for, or example:
- Time data acquisition
- General noise and vibration measurements
- Basic and advanced acoustics
- Structural Analysis
- Machine Diagnostics
- Electroacoustic testing

FEATURES

- · Dyn-X input modules with single, 160 dB input range
- Automatic detection of front-end hardware and transducers – supports IEEE 1451.4-capable transducers with TEDS (Transducer Electronic Data Sheet)
- Fully conditioned input and output channels for microphones and accelerometers, charge transducers, CCLD transducers and other transducers acting as voltage sources
- Full overload detection including out-of-band overload and indication of incorrect conditioning
- LAN interface allows the front-end to be placed close to the test object and reduces transducer cable length
- · Rugged design for industrial use
- Battery (3560-B, C only)/external DC operated acquisition unit for field use
- Low-noise operation

PULSE is a versatile, task-oriented system for noise and vibration analysis. It provides the platform for a range of PC-based measurement solutions from Brüel & Kjær.

A PULSE system consists of a PC with LAN interface, PULSE software, Windows[®] 2000, XP or Windows Vista[®], Microsoft[®] Office and IDA^e-based data acquisition front-end hardware. A system can contain more than 300 input channels located in up to 10 front-ends. The input/output conditioning modules perform signal conditioning and digitise the transducer signals. The IDA^e modules available for use in PULSE systems are shown in Fig. 1 and listed in the Ordering Information on page 23. Modules can be freely mixed in a single front-end or in a multiframe system. Further information on the controller and input/output modules is given in Table 1.

Fig. 1

Overview of the components available for use in a PULSE System with LAN Interface

Standard configurations for a wide variety of applications are described in the "PULSE Analyzers &

For information on PULSE Pocket Analyzer Type 3560-L, see the separate Product Data (BP 1967)

Solutions" Catalogue

both printed (BF 0209)

and on www.bksv.com

Table 1 Types and modules comprising PULSE front-ends

Туре	Product Name	Frequency Range	Aux. Channels	Simultaneous Channels	Connectors	Input Type						
Type 3560-	-В											
3560-B-010 3560-B-110				5 Input	LEMO	Direct/CCLD ^{a, b} /Mic. Preamp. 1 Tacho Conditioning ^c						
3560-B-020 3560-B-120	5-channel PUI SF Data	0 Hz to	16 Aux Input ^d	1 Sine Output	BNC	Direct/CCLD ^a 1 Tacho Conditioning ^c	•					
3560-В-030 3560-В-130	Acquisition Unit	25.6 kHz	(10 samples/s) 2 Digital Output	5 Input	LEMO	Direct/CCLD ^{a, b} /Mic. Preamp. 1 Tacho Conditioning ^c						
3560-В-040 3560-В-140				1 Generator Output	BNC	Direct/CCLD ^a 1 Tacho Conditioning ^c						
Types 356	0-C, D, E		•				С	D	Е			
3109	Generator, 4/2-ch. Input/ Output Module	0 Hz to 25.6 kHz		4 Input 2 Generator Output	BNC and	Direct/CCLD ^a /Mic. Preamp.						
3110	Generator, 2/1-ch. Input/ Output Module	0 Hz to 204.8 kHz		2 Input 1 Generator Output ^e	LEMO	1 Tacho Conditioning ^c						
3038 3040					BNC	Direct/CCLD ^a 2 Tacho Conditioning ⁸	es inels	dules mels	dules mels			
3038-B 3040-B	12-cn. Input Module	0 Hz to	-	12 Input	$2 \times \text{Sub-D}$	Direct/CCLD ^a /Mic. Preamp. ^b	modul ut char	se mo ut char	se mo ut char			
3039 3041	C also largest Markela	25.6 kHz			5.6 kHz	25.6 kHz	C last	BNC and LEMO	Direct/CCLD ^a /Mic. Preamp 1 Tacho Conditioning ^c	f these 17 inpu	5 of the 65 inpu	8 of the 96 inpu
3039-В 3041-В	6-cn. Input Module			6 Input	Sub-D	Direct/CCLD ^a /Mic. Preamp. ^b	Up to	Up to Up to	Up to Up to			
3035	6-ch. Charge & CCLD Input Module	0 Hz to 25.6 kHz	-	6 Input	BNT/BNC and TNC	Charge/Direct/CCLD ^a Tacho Conditioning on BNT Connector						
UA-1365	Blank Module		•	-		·						
7536	Controller Module	-			-							
7537 7538				5 Input 1 Sine Output		Direct/CCLD ^{a, b} /Mic. Preamp.	ules	ules	ules			
7539 7540	5/1-ch_Input/Output	0 Hz to	16 Aux Input ^d (10 samples/s)	5 Input 1 Generator Output	LEMO	1 Tacho Conditioning ^c	e mod	e mod	e mod			
7537-A 7538-A	Controller Module	25.6 kHz	2 Digital Output	5 Input 1 Sine Output	5110	Direct/CCLD ^a	of thes	of thes	of thes			
7539-A 7540-A				5 Input 1 Generator Output	BNC	1 Tacho Conditioning ^c	-	-	~			
a. Constan	. Constant Current Line Drive for DeltaTron [®] and ICP [®] d. Only 12-channel currently supported in PULSE software											

Accelerometers or Microphone Preamplifier Using adaptor cables b

All input channels can be used for tachometer operation C.

Upper frequency @ 102.4 kHz

1-X modules – See "Dyn-X Modules – Types 7538/38-A, 7540/40-A, 3035, 3040/40-B, 3041/41-B, 3560-B-110/120/130/140" on page 6.

PULSE Type 3560-B – Compact Data Acquisition Unit, up to 5 Input Channels

FEATURES

- · Compact, robust casing for industrial and hard everyday use
- Battery operated (5 hours continuous) or DC powered (10 32 V)
- Silent operation to 35°C
- · Cooling fans can be turned off for silent operation (will automatically restart if too hot)
- Synchronous sampling with other PULSE front-ends

Dv

Type 3560-B is a compact data acquisition system for battery/DC powered operation. The unit handles communication with the PC, measurement input and provides a sample clock. Eight versions are available, four standard and four Dyn-X - see the upper portion of Table 1.

A handle, UA-1689, is available for mounting on top of Type 3560-B, making it easier to carry.

FEATURES

- · Houses one input/output module and one controller module
- · Robust casing for industrial and hard everyday use
- Rain cover for front panel allows passage of cables
- Battery operated or DC powered (10 32 V)
- Cooling fans can be turned off for silent operation (will automatically restart if too hot)
- Synchronous sampling with other PULSE front-ends

Type 3560-C is a portable data acquisition system with a battery/ DC powered Type 2827 power supply unit. It can hold any combination of 1 Controller Module and 1 Input/Output Module (see Fig. 1 and Table 1). The controller module handles communication with the PC while the input/output module handles measurement input and provides a sample clock. As an example, a Type 3560-C fitted with a 5/1-ch. Input/Output Controller Module Type 7537 and a 12-ch. Input Module Type 3038 can measure up to 17 input channels.

050151

Environmental

To survive the harsh electrical environment found in, for example, cars, Type 3560-C has specifications that exceed the European EMC immunity requirements. ISO 7637–1 and 7637–2 "Road Vehicles – Electrical disturbance by conduction and coupling" requirements are met. Mechanical robustness is equally high, meeting MIL–STD–810C and IEC 60068–2–6.

Since all portable PULSE systems are built for outdoor use, they meet strict requirements for temperature and humidity. The operating temperature range extends from -10 to $+50^{\circ}$ C (+14 to 122°F). Type 3560-C will withstand rain if kept with the front panel facing upwards and the protection cover in place.

PULSE Type 3560-D - Multichannel Portable Data Acquisition Unit, up to 65 Input Channels

FEATURES

- Houses up to 5 input/output modules, Power Supply Type 2826 and one controller module
- Robust casing for industrial and hard everyday use
- DC powered (10 32 V) or via AC/ DC convertor
- Main cooling fans can be turned off for nearly silent operation (will automatically restart if too hot)
- Synchronous sampling with other PULSE front-ends

Type 3560-D is a data acquisition system comprising a frame that contains 7 modules. One of these must be the DC Power Supply Unit Type 2826, and one must be a Controller Module. The remaining 5 modules can be freely chosen from the I/O modules (see Fig. 1 and Table 1).^a

a. Note that one input module is always required, so the minimum input module configuration for Type 3560-D is: Type 2826 + Type 7536 + one input module; or Type 2826 + one of Types 7537, 7537-A, 7538, 7538-A, 7539, 7539-A, 7540, 7540-A

FEATURES

- Comprises up to 8 input/output modules, Power Supply Type 2826 and one controller module
- DC powered (10 32 V) or via AC/DC convertor
- Optional Rack Mounting Enclosure KQ-0155, Air Guide EA-0540 and Fan Unit UH-1037
- Synchronous sampling with other PULSE front-ends

Type 3560-E is a rack-mounted data acquisition system comprising 10 modules. One of these must be the DC Power Supply Unit Type 2826, and one must be a Controller Module. The remaining 8 modules can be freely chosen from the I/O modules (see Fig. 1)^a.

The system is delivered with a 19" Rack Mounting Kit, as shown above. A 19" Rack Enclosure KQ-0155, Air Guide EA-0540 and Fan Unit UH-1037 are available for rack-mounted systems.

Power Supply

Types 3560-B and **3560-C** can either be powered by two internal Nickel-Metal Hydride batteries or from a 10 - 32 V DC power supply. A 100 - 240 V AC mains supply unit is included. The unit can be switched on and off from the front panel or, when using more than one front-end in one system, the on/off function can be controlled by another front-end using the Multiframe Control signal. A third possibility is to follow an external DC power supply, so that it switches on when the supply is connected.

When batteries are used^b, indicators on each side of the front panel indicate the condition of the batteries, allowing hot swap without interrupting measurement. When connected to an external DC supply, the batteries are charged automatically.

Types 3560-D and **3560-E** can be powered from a 10 - 32 V DC power supply. An external 100 - 240 V AC mains supply unit, ZG-0430, is provided. The unit is a Type 2826 that can be switched on and off from the front panel or, when using more than one front-end in one system, the on/off function can be controlled by another front-end using the Multiframe Control signal. A third possibility is to follow an external DC power supply, so that it switches on when the supply is connected.

DC Output

To provide power for accessories such as a LAN switch or wireless LAN for interconnecting more front-ends, Types 3560-B, C and D have a 5 and 12 V DC output (LEMO FGG.00.302 connector) with fuse. Cables for these accessories must be ordered separately.

Silent Operation, Cooling

Type 3560-B is silent, operating without fans at ambient temperatures up to 35°C (95°F). Above this temperature the fans start up, but can be switched off from the PULSE software.

b. Batteries are not included.

a. Note that one input module is always required, so the minimum input module configuration for Type 3560-E is: Type 2826 + Type 7536 + one input module; or Type 2826 + one of Types 7537, 7537-A, 7538, 7538-A, 7539, 7539-A, 7540, 7540-A

Types 3560-C and **3560-D**: During operation fans keep the temperature of the unit within safety limits. In measurement situations where the fan noise^a can influence measurement results, the fans can be switched off from the PULSE software. If overheating threatens, the fans are automatically turned on again.

Dyn-X Modules - Types 7538/38-A, 7540/40-A, 3035, 3040/40-B, 3041/41-B, 3560-B-110/120/130/140

Fig. 2 Simplified block diagram of Dyn-X principle

Dyn-X technology – Exclusive Range from 0 to 160 dB

Dyn-X is an innovative range of state-of-the-art input modules with a single input range from 0 to $10 V_p$ and a useful analysis range exceeding 160 dB.

To date, high-quality transducers and preamplifiers have outperformed measuring equipment with regard to linearity and dynamic performance, being able to deliver a noise- and distortion-free signal over a dynamic signal range of 120 to 130 dB broadband and 160 dB narrow-band.

Fig. 3

160 dB analysis in one range. An FFT measuring a 1 KHz signal 80 dB below fullscale (7 V_{rms}). Note that noise and all spurious components measure 160 dB below full scale input Now, with Dyn-X technology, the entire measurement and analysis chain for the first time matches or outperforms the transducer used for measurement. This eliminates the need for an input attenuator for ranging the analysis system input to the transducer output. All that you need to do to get excellent results is choose the right transducer.

Transducer Overload

Transducer max. output level can be entered in the software. If the input exceeds this level, then

Dyn-X modules will give as overload warning on the front-end and in the PULSE Level Meter.

Accuracy, Safety and Efficiency

With no input range to set, you no longer have to worry about overloads, underrange measurements or discussions about the validation and verification of measurement results. And with no need for trial runs to ensure that the input range is correct, you have a far greater certainty of getting measurements right first time.

The measurement situations and applications below are examples of where the new Dyn-X technology can be usefully employed:

When you need to get the measurement right first time	 Crash testing Destructive testing Heavy machinery – run up/ coast down 	When signal levels are unknown	 Run up/down Field testing
Where there's minimal user interaction	 Road testing Field testing	When an overview of the whole measurement scenario	When measuring many channels
When time is limited	 Test cells Wind tunnels Road testing Flight testing 	is difficult	 When combining more signal types: Vibration, Sound, Temperature, Pressure, RPM, etc. Test cells In-car testing Sound, vibration and other parameters involved
When testing is unattended	Production line Noise monitoring	High-dynamic applications	 Impulsive testing, room acoustics Run up/down Electroacoustics Structural measurements

a. See the Acoustic Noise Emission specifications for Types 3560-C (page 13) and 3560-D (page 13).

Input Channels

Available Input Modules

	Standard	Dyn-X
Input Modules		
12-ch. Input Module	3038, 3038-B	3040, 3040-B
6-ch. Input Module	3039, 3039-B	3041, 3041-B
6-ch. Charge & CCLD Input Module	-	3035
Input/Output Modules		
Generator, 4/2-ch. Input/Output Module	3109	
Generator, 2/1-ch. Input/Output Module	3110	
Input/Output Controlle	r Modules	
5/1-ch. Input/Output Controller Modules	7537, 7537-A (3560-B-010/020)	7538, 7538-A (3560-B-110/120)
5/1-ch. Input/Output Controller Modules with Generator	7539, 7539-A (3560-B-030/040)	7540, 7540-A (3560-B-130/140)

USES

• Input channels for multichannel acoustic and vibration measurements

FEATURES

- Support IEEE 1451.4 capable transducers with TEDS
- Automatic DC offset compensation
- · Overload indicator indicates incorrect conditioning and cable breaks on connected transducers
- · Overload detection including out-of-band frequencies

Functions and features available in the modules are determined by software implemented and downloaded from PULSE LabShop.

Independent Channels

The input channels on a module can be set up independently; you can set up the high-pass filters and input gain separately and attach different types of transducers to different channels. The microphone polarization voltage can be switched on for all channels. (Note: Where polarization voltage is available, it is the same on all microphone channels in a module).

IEEE 1451.4 Transducers

Input modules supports IEEE 1451.4 capable transducers with standardised Transducer Electronic Data Sheets (TEDS). This feature allows automatic front-end and analyzer setup, based on information stored in the transducer. This information includes, for example, sensitivity, serial number, manufacturer and calibration date.

Transducer Conditioning Check

Input modules use two methods to detect transducer cable breaks or whether the wrong conditioning has been cho-

sen. For microphones, their supply current is monitored. For DeltaTron[®] accelerometers (or microphones using DeltaTron[®] preamplifiers), the supply voltage is monitored. If conditioning errors such as a broken cable are detected, an error event is indicated as an overload on the specific channel.

Table 2 Overview of modules with input channels

Standard		2029	2028 B	2020	2020 B	2100	2110	7537	7537-A
Standard	-	3030	3036-В	3039	3039-В	3109	5110	7539	7539-A
Dup Y	2025	3040	3040 B	2044	2044 B		75		7538-A
Dyn-X	3035	5040	3040-B	5041	3041-B	_	_	7540	7540-A
Input Channels	6	12	12	6	6	4	2	5	5
Frequency Range			25.6 kl	Ηz			204.8 kHz	25.	6 kHz
BNC (CCLD ^a /Direct) ^b	5	10	-	5	-	4	-	-	5
BNT (CCLD ^a /Direct/Tacho) ^b	Ch. 1	Ch. 1 and 7	-	Ch. 1	-	Ch. 1	2	Ch. 1	Ch. 1
TNC (Charge)	6	-	-	-	-	-	-	-	-
LEMO (Preamp.)	-	1	_	6	-	4	2	5	-
37-pole D-sub	-	-	2	-	1	-	-	-	-
Supports Charge Injection Calibration (CIC) check with LEMO microphone preamplifiers ^c	_	_	Yes ^d	Yes	Yes	Yes	Yes Yes		Yes ^d
Intensity Phase Matching	All	5 + 6, 11 + 12	5 + 6, 11 + 12 ^d	5 + 6	5 + 6 ^d	Ch. 3 and 4	All	4 + 5	-
	BN1/ BNC	Fro	om 2005: All chan	nels			From 2005: All channels		
	Dyn-X: All channels				Dyn-X: All channels				
AD converters		24-ł	24-bit to 25.6 kHz			16-bit to 25.6 kHz	6-bit to 25.6 kHz 24-bit to 25.6 kHz, 24-bit to 25. 16-bit to 204.8 kHz		o 25.6 kHz
Floating/Non-floating		Yes –			_	Yes			
Microphone Polarization	-	-				0 or 200 V		-	

a. Including $\text{DeltaTron}^{\mathbb{R}}$ and $\text{ICP}^{\mathbb{R}}$

b. Charge operation can be obtained directly using Type 3035 or by using Charge to DeltaTron® Converter Type 2647 with other modules

c. Via dedicated application software and OLE interface

d. Via AO-0602 37-pole to 6 \times LEMO Adaptor Cable

6-ch. Charge & CCLD Input Module Type 3035

6-channel Charge & CCLD Input Module Type 3035 is designed specifically to allow the direct connection of charge transducers to a PULSE system. Each channel also has DeltaTron capability for IEPE transducers, and can also be used for direct input of voltages. Type 3035 compliments the other input modules in the PULSE IDA^e range, and incorporates Dyn-X technology to give a useful measurement range of 160 dB on each channel.

CCLD and Voltage Inputs

The voltage and DeltaTron inputs are via BNC connectors, and each channel has the same specification as the other Dyn-X input channels, such as those found on Types 3040 and 3041.

Charge Inputs

TNC connectors are provided for charge transducers. These provide the most stable charge contact for avoiding triboelectric noise from vibrations. TNC to microdot (10-32 UNF) adaptors are included. The Dyn-X technology ensures optimal transducer support and ease of use and makes it possible to condition all charge transducers in only two input ranges (1 nC or 10 nC), while still providing state-of-the-art performance. Selectable dedicated high-

pass (0.1, 1, 10 and 30 Hz) are provided, while low-pass filters (0.1, 1, 3, 10 and 30 kHz) allow efficient damping of the high accelerometer sensitivity at resonance, thus optimising the useful dynamic range.

Output Channels

Available Generator Modules

	Standard	Dyn-X					
Input/Output Modules							
Generator, 4/2-ch. Input/Output Module	3109						
Generator, 2/1-ch. Input/Output Module	3110						
Input/Output Controlle	r Modules						
5/1-ch. Input/Output Controller Modules	7537, 7537-A (3560-B-010/020)	7538, 7538-A (3560-B-110/120)					
5/1-ch. Input/Output Controller Modules with Generator	7539, 7539-A (3560-B-030/040)	7540, 7540-A (3560-B-130/140)					

USES

• Generator output channels for system excitation for acoustic and vibration measurements

FEATURES

- Type 3109: 2 output channels: Full generator functionality to 25.6 kHz
- Type 3110: 1 output channel: Full generator functionality to 102.4 kHz
- Types 7539, 7539-A (3560-B-030/040), 7540, 7540-A (3560-B-130/140): 1 output channel: Full generator functionality to 25.6 kHz
- Waveforms determined by PULSE software (see BU 0229)
- Types 7537, 7537-A (3560-B-010/020), 7538, 7538-A (3560-B-110/120): 1 output channel: Sine waveforms up to 25.6 kHz; sine wave only

Type 3109

The two output channels on Type 3109 can be used as signal generators with a frequency range from 0 to 25.6 kHz and can supply all the signals necessary for performing system analysis.

Type 3109 is designed around a powerful digital signal processor and a 24-bit D/A converter, and has exceptional flexibility, stability and accuracy. Output levels are adjustable in hardware, with maximum output ranging from 5 mV to 5 V RMS. Lower levels are possible by scaling the signal to the D/A converter. The signal is provided by a BNC connector and can be referred to ground or floating. It is possible to add a DC offset, but any unwanted DC offset is automatically removed.

Emergency Stop

The connector at the top of the module allows connection to an emergency stop control, allowing you to stop the generators immediately.

Type 3110

The output channel on Type 3110 can be used as signal generator with a frequency range from 0 to 102.4 kHz and can supply all the signals necessary for performing system analysis. The generators are controlled from PULSE software.

Type 3110 is designed around a powerful digital signal processor and a 24-bit D/A convertor, and has exceptional flexibility, stability and accuracy. The full dynamic output range is obtained from 7 mV to 7 V peak. Lower levels are possible by scaling the signal to the D/A converter. The signal is provided by a BNC connector and can be referred to ground or floating. It is possible to add a DC offset, but any unwanted DC offset is automatically removed.

Type 3110

Brüel & Kjær 🐠 200/100

2514

0501

Monitor Output

An input monitor signal is available on a BNC connector for each input channel. The signal is taken after the high-pass filter but before the anti-aliasing filter. The signal level is $2.236 V_p$ for full-scale input in any range. The signal is always referred to (chassis) ground.

Types 7539, 7539-A, 7540, 7540-A

The output channels on these modules can be used as signal generators with a frequency range from 0 to 25.6 kHz and can supply all the signals necessary for performing system analysis.

The modules are designed around a powerful digital signal processor and a 24-bit D/A converter, and have exceptional flexibility, stability and accuracy. The signal is provided by a BNC connector and can be referred to ground or floating. It is possible to add a DC offset, but any unwanted DC offset is automatically removed.

Types 7537, 7537-A, 7538, 7538-A

The output channels on these modules can be used as simple, high-quality sine tone generators with a frequency range from 0.001 to $25.6 \,\text{kHz}$. The maximum output voltage is $5 \,\text{V}_{\text{rms}}$ delivered in one output range through a 24-bit D/A converter. The signal is provided by a BNC connector, and may be referred to ground or floating.

Controller Modules

Available Controller Modules

	0111				
	Standard	Dyn-X			
100 Mbit Controller Module	7536				
5/1-ch. Input/Output Controller Modules	7537, 7537-A (3560-B-010/020)	7538, 7538-A (3560-B-110/120)			
5/1-ch. Input/Output Controller Modules with Generator	7539, 7539-A (3560-B-030/040)	7540, 7540-A (3560-B-130/140)			

USES

- Communication interface between a PULSE Front-end and a PC running PULSE software, via LAN (Local Area Network)
- Measurement of voltage or physical parameters like position, wind speed or temperature via 12 auxiliary input channels

FEATURES

- Sets up and transmits data from input modules, provides sampling clock and synchronisation of front-ends
- Connection of remote control for sound intensity measurements via RS-232 interface
- Data transfer according to standard TCP/IP protocol

Synchronisation and Stacking

Controller Modules control and route all communication between the PC and the input/output modules, and transmit or receive synchronisation and clock signals to or from other front-ends. This enables up to 10 units to be combined to act as one multichannel system. It also enables all front-ends in a system to be turned on or off simultaneously.

RS-232

An RS-232 interface on the front panel allows communication with the optional Remote Control Unit ZH-0632 for sound intensity measurements. The interface is also used for setting up the LAN address and testing the frontend hardware.

Auxiliary Channels

12 DC channels^a, present on a single connector, are each sampled 10 times per second. The channels are singleended and have six input ranges from 0.1 V to 31.6 V in 10 dB steps.

050144

PULSE Software and Applications

The base software for a PULSE system is Noise and Vibration Analysis Type 7700 with both FFT and CPB analyzers, though separate FFT and CPB licenses are available as FFT Analysis Type 7770 and CPB Analysis Type 7771. On this base, you can install any other PULSE software and applications such as Data Recorder Type 7701 and Time Capture Type 7705. For descriptions of the PULSE software please refer to the separate System Data, BU 0229.

a. 4 additional auxiliary inputs are included for future use, and 2 open drain outputs, which allow for simple on/off control.

Compliance with Standards

(For environmental specifications and compliance with standards for PCs, see the specifications given by their respective manufacturers)

TYPES 3560-B-010, -020, -030, -040, -110, -120, -130, -140, TYPES 3560-C, 3560-D AND 3560-E WITH CONTROLLER MODULE TYPE 7536, INPUT/OUTPUT CONTROLLER MODULE TYPE 7537, 7537-A, 7538, 7538-A, 7539, 7539-A, 7540 OR 7540-A INPUT/OUTPUT MODULE TYPE 3035, 3038, 3038-B, 3039, 3039-B, 3040, 3040-B, 3041, 3041-B, 3109 OR 3110

CE, C	CE-mark indicates compliance with: EMC Directive and Low Voltage Directive. C-Tick mark indicates compliance with the EMC requirements of Australia and New Zealand.
Safety	EN/IEC61010-1: Safety requirements for electrical equipment for measurement, control and laboratory use. UL61010B-1: Standard for Safety – Electrical measuring and test equipment.
EMC Emission	EN/IEC 61000–6–3: Generic emission standard for residential, commercial and light industrial environments. EN/IEC 61000–6–4: Generic emission standard for industrial environments. CISPR 22: Radio disturbance characteristics of information technology equipment. Class B Limits. FCC Rules, Part 15: Complies with the limits for a Class B digital device.
EMC Immunity	EN/IEC61000-6-1: Generic standards – Immunity for residential, commercial and light industrial environments. EN/IEC61000-6-2: Generic standards – Immunity for industrial environments. EN/IEC61326: Electrical equipment for measurement, control and laboratory use – EMC requirements. Note: The above is only guaranteed using accessories listed in this System Data.
Temperature	IEC 60068-2-1 & IEC 60068-2-2: Environmental Testing. Cold and Dry Heat. Operating Temperature: -10 to +50°C (14 to 122°F) Storage Temperature: -25 to +70°C (-13 to 158°F)
Humidity	IEC 60068-2-78: Damp Heat: 93% RH (non-condensing at 40°C (104°F))
Mechanical	Operating (peak values) MIL-STD-810C: Vibration: 12.7 mm, 15 ms ⁻² , 5-500 Hz Non-operating: IEC 60068-2-6: Vibration: 0.3 mm, 20 ms ⁻² , 10-500 Hz IEC 60068-2-27: Shock: 1000 ms ⁻² IEC 60068-2-29: Bump: 1000 bumps at: 250 ms ⁻²
Enclosure	IEC 60529: Protection provided by enclosures: 3560-B: IP40; 3560-C: IP32; 3560-D: IP40; 3560-E: IP20

EFFECT OF RADIATED/CONDUCTED RF, MAGNETIC FIELD AND VIBRATION

Radiated RF: 80-1000 MHz, 80% AM 1 kHz, 10 V/m Conducted RF: 0.15-80 MHz, 80% AM 1 kHz, 10 V Magnetic Field: 30 A/m, 50 Hz Vibration: $5-500\,\text{Hz},\,12.7\,\text{mm},\,15\,\text{m/s}^2$ Input measured in 7.071 mV range with shorted input. All values are

Input measured in 7.071 mV range with shorted input. All values are RMS. Conducted RF immunity on all channels is only guaranteed using an external connection from measuring ground to chassis terminal on Types 2826 or 2827

Input/Output	Radiated RF	Conducted RF	Magnetic Field	Vibration
Direct/CCLD	<10 μV	<130 μV	<4 µV	<80 µV
Preamplifier	<10 μV	< 25 µV	<8 µV	<80 µV
Generator	<60 μV	< 25 µV	<4 µV	< 5µV
Charge	<130 fC	<130 fC	<10 fC	<80 fC

Specifications – PULSE Types 3560-B/C/D/E

Multi-analyzer Systems Type 3560-B, 3560-C, 3560-D and 3560-E with LAN interface are modular, expandable, multi-analysis systems that include the following components:

- Microsoft $^{\otimes}$ Windows $^{\otimes}$ 2000 or Windows $^{\otimes}$ XP or Windows Vista $^{\otimes}$ operating system
- Microsoft[®] Office 2000, 2003, 2007 or XP
- Front-end comprising: Power Supply/Frame, Controller Module and a number of Input/Output Modules (see below)

Pentium[®] PC
PULSE software

POWER REQUIREMENTS

Fulfils the requirements of ISO 7637–1 and 7637–2 with batteries Voltage: 10 – 32 V DC Power Consumption: Nominal: 14 W Max.: 26 W (while charging battery)

Specifications – Portable PULSE Type 3560-B

Ext. Power Connector: LEMO coax., FFA.00.113, ground on shield

BATTERIES

Optional Accessories: $2 \times DR35$ NiMH or NI 1030, 10.8 V (nominal) Working Time (Continuous): 5 hours Charging Time: 5 hours/battery

ACOUSTIC NOISE EMISSION (at 1 m)

Silent operation to 35°C (95°F) when not charging batteries. When charging batteries, fan operation may start at a lower ambient temperature

Specifications – Portable PULSE Type 3560-C

POWER SUPPLY/FRAME

Type 2827

AVAILABLE MODULES

See "Ordering Information – PULSE Systems 3560-B, 3560-C, 3560-D, 3560-E" on page 23

POWER REQUIREMENTS

Fulfils the requirements of ISO 7637-1 and 7637-2 with batteries Voltage: 10 - 32 V DC

Power Consumption:

Without DC output and when fitted with:

1×7536 Controller Module

1 × 3109 4/2-ch. or 3110 2/1-ch. Input/Output Module Nominal: 30 W Max.: 42 W (while charging battery)

Ext. Power Connector: LEMO coax., FFA.00.113, ground on shield

BATTERIES

Optional Accessories: $2 \times DR35$ NiMH or NI 1030, 10.8 V (nominal) Working Time (Continuous): $2\frac{1}{2}$ hours Charging Time: 5 hours/battery

ACOUSTIC NOISE EMISSION (at 1 m)

	dB SPL, A-weighted at 1 m	dB Lw, A-weighted
Fan Off	<17	<25
Normal (22°C)	32	40
Max.	33	41

DC OUTPUT

+5 V \pm 0.5 V; max. 0.4 A (1 A fused) +12 V \pm 1.0 V; max. 0.4 A (1 A fused) Connector: LEMO FGG.00.302

DIMENSIONS (WITHOUT PROTECTIVE COVER)

Height: 105 mm (4.1") Width: 376 mm (14.8") Depth: 300 mm (11.8") Weight: 5 kg (11 lb.) with Controller Module and Input/Output Module. When fitted with batteries, 6 kg (13 lb.)

Specifications – Multichannel Portable PULSE Type 3560-D

POWER SUPPLY Type 2826

FRAME (INCL. FAN UNIT) KK-0050

AVAILABLE MODULES

See "Ordering Information – PULSE Systems 3560-B, 3560-C, 3560-D, 3560-E" on page 23

POWER REQUIREMENTS

Voltage: 10 – 32 V DC Power Consumption: Without DC output and when fitted with: 1 × 7536 Controller Module 35 W nominal with 1 input module 100 W nominal with 5 input modules Ext. Power Connector: Neutrik[®] Powercon 3-pole Max. No. of Tacho Probes: 4 in full frame

DC OUTPUT

+5V ± 0.5V; max. 0.4A (1A fused) +12V ± 1.0V; max. 0.4A (1A fused) **Connector:** LEMO FGG.00.302

ACOUSTIC NOISE EMISSION (at 1 m)

	dB SPL, A-weighted at 1 m	dB Lw, A-weighted 35 38 50	
Fan Off	27	35	
Normal (22°C)	30	38	
Max.	42	50	

DIMENSIONS

Height: 194 mm (7.6") with feet, 170 mm (6.7") without feet **Width:** 376 mm (14.8") **Depth:** 342 mm (13.5")

Specifications – Multichannel PULSE Type 3560-E

POWER SUPPLY

Type 2826

RACK MOUNTING KIT WU-0516

AVAILABLE MODULES

See "Ordering Information – PULSE Systems 3560-B, 3560-C, 3560-D, 3560-E" on page 23

POWER REQUIREMENTS

Voltage: 10 - 32 V DCPower Consumption: When fitted with: 1×7536 Controller Module 35 W nominal with 1 input module 140 W nominal with 8 input modules Ext. Power Connector: Neutrik[®] Powercon 3-pole Max. No. of Tacho Probes: 2 in full frame

DIMENSIONS

Height: 134 mm (5.3") (3 standard rack-mounting units)
Width: 482.6 mm (19")
Depth: 300 mm (11.8")
Weight: 8.7 kg (19 lb.) with Controller Module and 8 Input/Output Modules; 17.5 kg (38.5 lb.) with KQ-0155 and UH-1037

			Standard 24-bit Dyn-X 7537/37-A/39/39-A, 3038/38-B/39/39-B 7538/38-A/40/40-A, 3035 (BNC 3560-B-010/020/030/040 3560-B-010/020/030/040 3040/40-B/41/41-B, 3560-B-110/12			3NC/BNT) 0/120/130/140				
Frequency Ran	ige					DC to 2	25.6 kHz			
A/D Conversion	n		24-bit 2 × 24-bit							
Data Transfer			24-bit							
			16-bit selectable							
Input Voltage F	Range		8 ranges: 7.071 mV _{peak} to 7.07V _{peak} in 10 dB steps ^a , + 12V _{peak}				1 range: 10V _{peak}			
Input Signal Ground Coupling			Floating or single-ended (grounded to chassis)							
Input Impedance						Direct, Microphon	e: 1 MΩ <200 pF			
						CCLD: >100	kΩ <200 pF			
Absolute Maximum Input						±35 V _{peak} wit	hout damage			
High-pass		DC $(f_L = 0)$								
Filters		–0.1 dB	-10%	-3	dB	Slope	-10%	-3	dB	Slope
		0.7 Hz high-pass filter	0.15 Hz	0.07	3 Hz	-20 dB/dec.	0.15 Hz	0.07	3 Hz	-20 dB/dec.
	7 H	Hz digital high-pass filter	1.45 Hz	0.70	7 Hz	-20 dB/dec.	1.45 Hz	0.70	7 Hz	-20 dB/dec.
		22.4 Hz high-pass filter	14.64 Hz	11.	5 Hz	-60 dB/dec.	14.64 Hz	11.5	5Hz	-60 dB/dec.
		Intensity filter	23.00 Hz	11.2	2 Hz	-20 dB/dec.	23.00 Hz	11.2	2 Hz	-20 dB/dec.
Absolute Amplitude Precision, 1 kHz, 1 V _{input}						±0.05 dB, typ	ical ±0.01 dB			
Attenuator Line	earity @	1 kHz	±0.	05 dB, ty	p. ±0.008	δdB		-	-	
Amplitude	0 t	o 60 dB below full scale	±0.1 dB, typ. ±0.01 dB			±0.05 dB, typ. ±0.01 dB			dB	
(linearity in	60 to 80 dB below full scale		±0.2 dB, typ. ±0.02 dB			±0.05 dB, typ. ±0.01 dB				
one range)	80 to 100 dB below full scale		typ. ±0.05 dB			±0.2 dB, typ. ±0.02 dB				
100 to 120 dB below full scale		120 dB below full scale	_			typ. ±0.02 dB				
	120 to	140 dB below full scale	_				typ. ±0).02 dB		
	140 to	160 dB below full scale		-	-		typ. ±1dB			
Overall Freque re 1 kHz, lower	ncy Resp limit f _L (oonse to upper limit f _U	DC to max. 25.6 kHz: ±0.1 dB							
Noise: Measured lin	10 Hz -	Input Range	Guaranteed			Typical	Guarantee	d		Typical
to 25.6 kHz: μV	/ _{ŗms _}	7.071 mV	<2.5 (<16)		2.2 (<14)		Sigr	nal level	<316 m\	peak
(input terminated 50Ω or less)	d by -	22.36 mV	<3 (<19)			2.2 (<14)				
(Values in parent	70.71 mV		<4 (<25)			2.5 (<16)	<4 (<25)		3 (<19)	
are specified in		223.6 mV	<6 (<38)			5.5 (<35)				
nV _{rms} /√Hz)	-	707.1 mV	<17 (<107	7)		13 (<82)	Sigr	nal level	>316 m\	peak
	-	2.236 V	<50 (<313	3)	:	33 (<207)				
	-	7.071 V	<150 (<94	0)	1	00 (<625)	<60 (<375)		50 (<313)	
		12 V	<250 (<1570) 150 (<940)		50 (<940)					
Spurious-free Dynamic Range	e -	Input Range		lyp			Typical			
(dB) re full sca	le _	7.071 mV		110						
(input terminated	dby -	22.36 mV		110						
50Ω or less)	-	70.71 mV		120)dB					
	-	223.6 mV		130			160 dB			
707.1 mV 2.236 V 7.071 V		707.1 mV		130						
		2.236 V		130						
			100							
DC Offect to for	ull coolo	12 V	Guaranta	130		Typical	Guaranta	d		Typical
	in scale			FU		-80 dB		, u		
Harmonic Dist	ortion (all	harmonics)	Guarantos	h		Typical	~-00 UD			00 00
	anion (di		Guarantee		anges	1) picai	Guarantee	ed		Typical
		-	-80 dB		-10)dB @ 1kHz	-80 dB		-10	0 dB @ 1 kHz

a In rare cases in CCLD mode or when measuring signals with a high DC level in the 7 mV_{peak} and 22.36 mV_{peak} ranges with 0.7 Hz or 7 Hz high-pass filter settings, an overload might be indicated. If this occurs, increase the input voltage range.

Specifications - Input Channels, Standard 24-bit and Dyn-X (continued)

		7537/37-A 356	Standard 24 /39/39-A, 303 60-B-010/020/	4-bit 38/38- /030/0	-B/39/39-B)40	7538/38-4 3040/40-B/41	Dyn \/40/40-A, /41-B, 35(-X 3035 (I 60-B-11)	3NC/BNT) 0/120/130/140
Crosstalk Between any two channed	els of a module or	Frequency Range	Guarantee	ed	Typical	Frequency Range	Guara	nteed	Typical
between any two channe	ers in different modules	0 – 25.6 kHz	-100 dB	3	-140 dB	0 – 25.6 kHz	-100) dB	-140 dB
Channel-to-Channel Ma	tch (same input range)	Guara	anteed		Typical Guaranteed			Typical	
M f _L is the -0.1 dB frequen	laximum Gain Difference cy of the high-pass filter	0.2 dB from Io limit, f _L , to u	ower frequenc opper limit, f _U	cy I	±0.01 dB	0.1 dB from lo limit, f _L , to u	wer frequ pper limit,	ency f _U	±0.01 dB
Ma f _L is t	ximum Phase Difference (within one frame) the -0.1 dB frequency of the high-pass filter	1.2° - 0.1° × (f/ 0.2° from 10 × f 0.1° + 0.1° × (f _L) from f _L to ² DC setting c _L to 1280 Hz (f/1280) from 2	10 × g); (valid 1280	f _L (not valid for for DC setting); Hz to 25.6 kHz	1.2° - 0.1° × (f/ 0.2° from 10 × 0.2° × (f/64	1.2° - 0.1° × (ff _L) from f_L to 10 × f_L (not valid for DC setting) 0.2° from 10 × f_L to 6.4 kHz (valid for DC setting) 0.2° × (ff6400) from 6.4 kHz to 25.6 kHz		
Channel-to-Channel Ma	itch (any input range)	Guara	anteed		Typical				
м	laximum Gain Difference	0.2 dB from lo limit, f _L , to u	ower frequenc opper limit, f _U	cy I	±0.01 dB				
Ma	ximum Phase Difference (within one frame)	$1.2^{\circ} - 0.1^{\circ} \times (f/$ 0.2° from 10 × 10.1° × 0.1° + 0.1° ×	f _L) from f _L to DC setting f _L to 640 Hz (۱ د (f/640) from	10 × g); (valid 640 l	f _L (not valid for for DC setting); Hz to 6.4 kHz		-		
Sound Intensity Phase (only for using intensit	Match y filter)	С	omplies with using Br	IEC 1 srüel &	043 standard Cla Kjær Sound Inte	iss 1 and ANSI S nsity Probes (0.01	31.12–199 17° @ 501	95 Class Hz)	1
	Channels Matched	7 30 3038, 30	537, 7539: 4 039, 3039 B: 5 038 B: 5 and	and 5 and 6, 11	5 6 and 12		All cha	nnels	
		Fro	om 2005: All c	chanr	iels				
	Frequency Range	Guaranteed F Match	Phase Ty	ypica	I Phase Match	Guaranteed F Match	Phase	Туріса	I Phase Match
	50 Hz – 250 Hz	±0.017°			±0.005°	±0.017°			$\pm 0.005^{\circ}$
	250 Hz – 2.5 kHz	0.017°×(f/2	:50)		±0.005°	0.017°×(f/2	:50)		±0.005°
	2.5 kHz – 6.4 kHz	±0.17°			±0.08°	±0.17°			±0.08°
Common Mode Rejection	on	Guarantee	ed		Typical	Guaranteed		Typical	
	0 – 120 Hz	70 dB			80 dB	70 dB 80 dB		80 dB	
	120 Hz – 1 kHz	55 dB			60 dB	55 dB 60 dB		60 dB	
	1 kHz – 25.6 kHz	30 dB			40 dB	30 dB 40 dB		40 dB	
Absolute Max. Commo	n Mode Voltage	±5V _{peak} without damage							
		±3V _{peak} without clipping							
		If common mode voltage exceeds the max. value, care must be taken to limit the signal ground current in order to prevent damage. Maximum is 100 mA. The instrument will limit the voltage to the stated max. "without damage" common mode value							
Anti-aliasing Filter	Filter Type				3rd order E	Butterworth			
At least 90 dB attenuation of those	-0.1 dB @				25.6	kHz			
frequencies which can	-3dB @				100	kHz			
cause allasing	Slope	-18 dB/octave							
Supply for Microphone	Preamplifiers	$\pm 14.0\text{V},10\text{mA}$ per channel (max. 20 mA if only 1 to 3 channels used)							
Supply for Microphone	Polarization	200 V ±1 V, or 0 V							
Supply for DeltaTron/IC	P [®] /CCLD	4 mA from 24 V source							
		If any DeltaTron/ICP [®] /CCLD-coupled channel is parallelled with another channel, this must also be DeltaTron/ICP [®] /CCLD-coupled. Otherwise the signal might be clipped by the parallelled channel							
Tacho Supply (on BNT	connectors)				6.5 V, ma	x. 100 mA			
Analog Special Functions		Microphone Charge Injection Calibration: All modules with 7-pin LEMO support CIC via dedicated application software and OLE interface Analog Self-test: Functional Check Transducers: Supports IEEE 1451.4 capable transducers with standardised TEDS							
Overload Detection ^b		Signal overloa CCLD overload fault Microphone pr high or too low Common mode	Transducers: Supports IEEE 1451.4 capable transducers with standardised TEDS Signal overload CCLD overload: Detection of cable break or short-circuit + detection of CCLD transducer working point fault Microphone preamplifier overload: Detection of microphone preamplifier current consumption too high or too low Common mode voltage overload						

b In Direct AC mode, care must be taken when measuring signals with a very high DC component – a DC + AC level exceeding approximately 12 V can be clipped and an overload will **not** be indicated

Specifications – Charge Input Channels, Dyn-X (all specifications for transducer capacitance = 1 nF)

•	•		•	•			
			3	Dyn-X 035 (TNC Charge Input:	s) ^a		
Frequency Range			0.1 Hz to 25.6 kHz				
A/D Conversion			2 × 24-bit				
Data Transfer			24-bit				
Input Range			2	ranges: 10 nCpeak/1 nCp	eak		
Input Signal Ground Cou	pling		Floating o	r single-ended (grounded	to chassis)		
Absolute Maximum Input	:		±	300 nC _{peak} without dama	ge		
High-pass Filters ^b DC ($f_L = 0$)				Not available			
_		-10%	-10%	-3 dB	Slope		
_		0.1 Hz high-pass filter	0.1 Hz	0.065Hz	-40 dB/dec.		
_	 1 Hz high-pass filter		1.0 Hz	0.65 Hz	-40 dB/dec.		
_		10 Hz high-pass filter	10.0 Hz	7.88 Hz	-60 dB/dec.		
_		30 Hz high-pass filter	30.0 Hz	23.63 Hz	-40 dB/dec.		
Low-pass Filters		-10%	-10%	-3 dB	Slope		
_		100 Hz low-pass filter	100 Hz	143Hz	-40 dB/dec.		
_		1 kHz low-pass filter	1.0 kHz	1.43 kHz	-40 dB/dec.		
_		3 kHz low-pass filter	3.0 kHz	4.31kHz	-40 dB/dec.		
		10 kHz low-pass filter	10.0 kHz	14.3 kHz	-40 dB/dec.		
		30 kHz low-pass filter	30.0 kHz	43.1 kHz	-40 dB/dec.		
_		low-pass filter bypassed	See Anti-aliasing Filter				
Absolute Amplitude Prec	ision, 1 kHz,	1 V _{input}	±0.05 dB, typ. ±0.01 dB				
Attenuator Linearity @ 1	kHz		±0.05 dB, typ. ±0.005 dB				
Amplitude Linearity		0 to 60 dB below full scale		±0.05 dB, typ. ±0.01 dB			
(linearity in one range)		60 to 80 dB below full scale		±0.05 dB, typ. ±0.01 dB			
		80 to 100 dB below full scale		±0.2 dB, typ. ±0.02 dB			
—		100 to 120 dB below full scale		typ. ±0.02 dB			
		120 to 140 dB below full scale	typ. ±0.02 dB				
		140 to 160 dB below full scale	typ. ±1 dB				
Overall Frequency Response re 1 kHz, lower limit f _L to	onse o upper limit f	fu	Min. 0.1 Hz to max. 25.6 kHz: $\pm 0.1dB, ~-10\%$ at f_L and f_U				
Noise:		Input Range	Signal Level	Guaranteed	Typical		
Measured lin. 10 Hz to 25 fC _{rms}	5.6 kHz: —	1 nC	<316 pC _{peak}	<5 (<32)	<3 (<19)		
(input terminated by 1 nF)		1 nC	>316 pC _{peak}	<15 (<94)	<7.5 (<47)		
(Values in parentheses are	specified	10 nC	<3160 pC _{peak}	<15 (<94)	<9 (<57)		
in aC _{rms} /√Hz [a = 10 ¹⁸])		10 nC	>3160 pC _{peak}	<65 (<407)	<50 (<313)		
Spurious-free Dynamic R	ange	Input Range		Typical	-		
(dB) re full scale input (input terminated by1 nF)		1 nC _{peak}		140 dB			
		10 nC _{peak}		150 dB			
DC Offset re full scale				Not applicable			
Harmonic Distortion (all h	harmonics, all	ranges)	Guaranteed		Typical		
		-80 dB	-80 dB -100 dl				
Crosstalk	Crosstalk		Frequency Range	Guaranteed	Typical		
Between any two channels of a module or between any two channels in different modules		0 – 25.6 kHz	-96 dB	-120 dB			
Channel-to-Channel Match (same input range) ^b Maximum Gain Difference Maximum Phase Difference (within one frame)		Guara	inteed	Typical			
		0.1 dB from 3 \times lowe to 1/3 upp 0.8 dB at f _L ,	er frequency limit, f _L , per limit, f _U 0.4 dB at f _U	±0.01 dB			
		$\begin{array}{c} 0.4^{\circ} \mbox{ from } 10 \times f_{L} \mbox{ to } 0.1 \times f_{U} \\ 0.2^{\circ} + 2^{\circ} \times (f/f_{U}) \mbox{ from } 0.1 \times f_{U} \mbox{ to } f_{U} \end{array}$ For $f_{L} = 10 \mbox{ Hz} \mbox{ or } 30 \mbox{ Hz} \mbox{ 1.4}^{\circ} - 0.1^{\circ} \times (f/f_{L}) \mbox{ from } f_{L} \mbox{ to } 10 \times f_{L} $ For $f_{L} = 0.1 \mbox{ Hz} \mbox{ or } 1 \mbox{ Hz} \mbox{ 5.4}^{\circ} - 0.5 ^{\circ} \times (f/f_{L}) \mbox{ from } f_{L} \mbox{ to } 10 \times f_{L} $					

Specifications – charge in	iput channels, byn-x (con	tunueu) (an specifications for tran	soucer capacitance = THF)	
		Dyı 3035 (TNC Cł	n-X large Inputs) ^a	
Channel-to-Channel Match (any inp	ut range) ^b	Guaranteed	Typical	
	Maximum Gain Difference		imit, f_L , ±0.02 dB	
	Maximum Phase Difference (within one frame)	$0.4^{\circ} \text{ from } 10 > 0.2^{\circ} + 2^{\circ} \times (\text{f/f}_{U}) 1$ For f _L = 10 Hz or 30 Hz: 1.4° – For f _L = 0.1 Hz or 1 Hz: 5.4° –	$ \begin{array}{l} f_L \ to \ 0.1 \times f_U \\ rom \ 0.1 \times f_U \ to \ f_U \\ \bullet \ 0.1^\circ \times (f/f_L) \ from \ f_L \ to \ 10 \times f_L \\ 0.5 \ ^\circ \times (f/f_L) \ from \ f_L \ to \ 10 \times f_L \end{array} $	
Common Mode Rejection		Guaranteed	Typical	
-	0 – 120 Hz	50 dB	55 dB	
	120 Hz – 1 kHz	50 dB	55 dB	
	1 kHz – 25.6 kHz	40 dB	50 dB	
Absolute Max. Common Mode Volta	ige	±5V _{peak} without damage		
		±3V _{peak} with	nout clipping	
		If common mode voltage exceeds the limit the signal ground current in order 100 mA. The instrument will limit the damage" common mode value	max. value, care must be taken to r to prevent damage. Maximum is voltage to the stated max. "without	
Anti-aliasing Filter	Filter Type	3rd order I	Butterworth	
frequencies which can cause	–0.1 dB @	25.6	kHz	
aliasing	-3 dB @	100	kHz	
	Slope	–18 dB	/octave	
Tacho Supply (on BNT connectors)		-		
Analog Special Functions		Analog Self-test: Functional Check		
Overload Detection ^c		Signal overload Common mode voltage overload DC servo out of range		

a.For CCLD and AC inputs see "Specifications – Input Channels, Standard 24-bit and Dyn-X" on page 14 b.For specifications with 0.7, 7 and 22.4 Hz high-pass filters, see the corresponding specifications for BNC/BNT Dyn-X channels c. **Note:** All overloads in charge mode are indicated as "signal overload"

Specifications – Input Channels, Types 3109 and 3110

			3109			3110		
Frequency Rar	nge		DC to 25.6 kHz		DC to 25.6	kHz	DC	to 204.8 kHz
A/D Conversio	n		16-bit		24-bit		16-bit ranç	for frequency ge >25.6 kHz
Data Transfer			16-bit		24-bit 16-bit selectable			16-bit
Input Voltage F	Range	7 ranges: 7.071 mV _{peak} to 7.071 V _{peak} in 10 dB steps			8 ranges: 7.071 mV _{peak} to 22.34 V _{peak} in 10 dB steps			2.34 V _{peak}
Input Signal G	round Coupling	Floatii	ng with 100 Ω to σ	chassis	Floating or single-ended (grounded to chassis			led to chassis)
Input Impedan	ce			Direct, Microphor	one: 1 MΩ <200 pF			
				CCLD: >100) kΩ <200 pF			
Absolute Maxin	mum Input	±50 V _{peak}	(±30 V DC) witho	ut damage	±35	V _{peak} witho	ut dan	nage
High-pass	DC $(f_L = 0)$							
Filters	–0.1 dB	-10%	-3 dB	Slope	-10%	-3 dE	8	Slope
	0.7 Hz high-pass filter	0.15 Hz	0.073 Hz	-20 dB/dec.	0.15 Hz	0.0731	Ηz	-20 dB/dec.
	7 Hz digital high-pass filter	1.45 Hz	0.707 Hz	-20 dB/dec.	1.45 Hz	0.707 H	Ηz	-20 dB/dec.
	22.4 Hz high-pass filter	14.64 Hz	11.5 Hz	-60 dB/dec.	14.64 Hz	11.5 H	z	-60 dB/dec.
	Intensity filter	23.00 Hz	11.2 Hz	-20 dB/dec.	23.00 Hz 11.2 Hz -20 dB/de		-20 dB/dec.	
Absolute Ampl	litude Precision, 1 kHz, 1 V _{input}		±0.1 dB		±0.05 dB, typ. ±0.005 dB		dB	
Attenuator Line	earity @ 1 kHz		±0.1 dB		±0.	05 dB, typ.	±0.005	dB

Specifications - Input Channels, Types 3109 and 3110 (continued)

•				- (,						
			31	09			31	10		
Amplitude	0 1	to 40 dB below full scale	±0.7	1 dB		-				
(linearity in	40 1	to 60 dB below full scale	±0.4	4 dB	-					
one range)	0 1	to 60 dB below full scale	-	-	±0.1 dB, typ. ±0.01 dB					
_	60 1	to 80 dB below full scale	±1	dB		±(0.2 dB, ty	p. ±0.02	dB	
	80 to	o 100 dB below full scale	-	-			typ. ±0	0.05dB		
Overall Frequen re 1 kHz, f _L to fլ	icy Res J	ponse	DC to max ±0.1	k. 25.6 kHz 1 dB		D(±0 +0.1/–0.1 +0.1/–0.1	C to max).1 dB, f _L 2 dB, f _L to 5 dB, f _L to	. 204.8 k to 25.6 k o 102.4 k o 204.8 k	Hz Hz Hz Hz	
Noise: μV_{rms} (input terminated 50 Ω or less)	by		Measured lin. 1	0 Hz to 25.6 kHz	25.6 kHz Measured lin. 10 Hz to 25.6 kHz		2	Meas lin. 10 204.	sured) Hz to 8 kHz	
(Values in parenth	neses	Input Range			24-bi	t ADC	16-bit	ADC	16-bit	t ADC
are specified in nV/√Hz)	-		Guara	inteed	Guar.	Тур.	Guar.	Тур.	Guar.	Тур.
		7.071 mV	3 (19)	2 (12.5)	1.5 (10)	2 (12.5)	1.5 (10)	6 (13)	4 (9)
	_	22.36 mV	3 (19)	2 (12.5)	1.5 (10)	2 (12.5)	1.5 (10)	6 (13)	4 (9)
		70.71 mV	5 (32)	2.5 (16)	1.7 (11)	4 (25)	2 (12.5)	10 (22)	6 (13)
		223.6 mV	10	(63)	5 (32)	2.5 (16)	10 (63)	5 (32)	20 (125)	12 (75)
	-	707.1 mV	31 (194)			5 (32)	31 (194)	16 (113)	60 (375)	30 (188)
		2.236 V	100	(625)	30 (188)	15 (94)	100 (625)	50 (313)	180 (1125)	125 (781)
	-	7.071 V	316 (1980)	100 (625)	45 (282)	300 (1875)	150 (938)	500 (3125)	400 (2500)
	•	22.4 V	-	-	300 (1875)	150 (938)	900 (5625)	500 (3125)	1500 (9375)	1200 (7500)
Spurious-free					DC	to 25.6	kHz DC		DC to 204.8 kHz	
Dynamic Range (dB) re full scale	е	Input Range	Guara	inteed	Guara	anteed	Тур.	G	uarantee	əd
input	by	7.071 mV			Spurious <1 uV		95 dB	3 Spurious <1 u		
50Ω or less)	. Sy	22.36 mV			Spunou	5 < 1 μ V	110 dB	Зрі		μv
		70.71 mV	80 dB or spurious <1 μ V, whichever spurious is greater		90 dB 120					
	-	223.6 mV								
	-	707.1 mV					120 dB		90 dB	
		2.236 V								
		7.071 V			_					
		22.4 V	-	-						
DC Offset re fui	i scale		Guara	o dP	Guaranteed					
Harmonic Disto	rtion (al	Il harmonics)					to 204.8	kH7		
	and the second sec	namonioc)	Guara	inteed	Guara	nteed	Tvp.	Guara	anteed	Tvp.
			All Ra	anges		7	mV to 7	V Range	es	
				0	-90) dB	-96 dB	-75	5 dB	-90 dB
			−80 dB or <1 μV, w	hichever is greater			22 V I	Range		
					-70) dB	-80 dB	-70) dB	-80 dB
Crosstalk Between any two	Crosstalk Between any two channels of a module or		Frequency Range	7 mV – 7 V Input Range	Frequency 7 mV - Range Input R		– 7 V Range	- 7V 22V Range Input Range		
between any two	channe	els in different modules	0 – 2 kHz	-100 dB	0 – 2 kHz		-130 dB		-90) dB
			2 – 12.8 kHz	-85 dB	2 - 12	2.8 kHz	-12	0 dB	-90) dB
			12.8 – 25.6 kHz	-80 dB	12.8 – 2	25.6 kHz	-11	0 dB	-90) dB
					25.6 – 1	02.4 kHz	-10	0 dB	-90) dB
					102.4 – 2	204.8 kHz	-90) dB	-80) dB

Specifications – Input Channels, Types 3109 and 3110 (continued)							
		3109			311	0	
Channel-to-Channel Ma	itch (same input range)	Guaranteed	Typical	Guara	anteed		Typical
М	laximum Gain Difference	0.2 dB from lower frequency limit, f_L , to upper limit, f_U	-	0.1 dB from lo limit, f _L , to u	ower freque	ency , f _U	<0.01 dB
Ma	ximum Phase Difference (within one frame)	$\begin{array}{l} 1.2^{\circ}-0.1^{\circ}\times(\text{f/f}_{L}) \text{ from }f_{L} \text{ to }10\times\\ DC \text{ setting});\\ 0.2^{\circ} \text{ from }10\times f_{L} \text{ to }1280 \text{ Hz (valid}\\ 0.1^{\circ}+0.1^{\circ}\times(\text{f}/1280) \text{ from }1280\end{array}$	f _L (not valid for l for DC setting); Hz to 25.6 kHz	$1.2^{\circ} - 0.1^{\circ} \times f$ and 0.2° at 10 0.2° from $10 \times f$ $0.4^{\circ} \times f / 6.4$ kHz (~1.4° at 25.6 kJ	$\begin{array}{l} 1.2^{\circ}-0.1^{\circ}\times f/f_{L} \mbox{ from } f_{L} \mbox{ to } 10\times f_{L} \ (\sim 1.1^{\circ} \mbox{ at } 10\times f_{L}) \ (not \ valid \ for \ DC \ setting) \\ 0.2^{\circ} \ from \ 10\times f_{L} \ to \ 6400 \ Hz \ (valid \ for \ DC \ setting) \\ 0.4^{\circ}\times f \ /6.4 \ kHz \ -0.2^{\circ} \ from \ 6.4 \ kHz \ to \ 204.8 \ kHz \ (\sim 1.4^{\circ} \ at \ 25.6 \ kHz, \ 6.2^{\circ} \ at \ 102.4 \ kHz \ and \ 12.6^{\circ} \ 204.8 \ kHz \) \end{array}$		$c_{\rm f_L}$ (~1.1° at $f_{\rm L}$ or DC setting); I for DC setting); Hz to 204.8 kHz Hz and 12.6° at
Channel-to-Channel Ma	atch (any input range)	Guaranteed Typical		Guaranteed		Typical	
М	laximum Gain Difference	0.2 dB from lower frequency limit, f_L , to upper limit, f_U	-	0.1 dB from lo limit, f _L , to u	wer freque	ency , f _U	<0.05 dB
Ma	Maximum Phase Difference (within one frame)		f _L (not valid for for DC setting); Hz to 6.4 kHz	$\begin{array}{c} 1.2^{\circ} - 0.1^{\circ} \times f/f_{L} \text{ from } f_{L} \text{ to } 10 \times f_{L} (\sim 1.1^{\circ} \text{ and } 0.2^{\circ} \text{ at } 10 \times f_{L} \text{ (not valid for DC settin } 0.2^{\circ} \text{ from } 10 \times f_{L} \text{ to } 6400 \text{ Hz} \text{ (valid for DC set } (\sim 1.6^{\circ} \text{ from } 6.4 \text{ kHz} \text{ to } 204.4 \text{ kHz} \text{ to } 204.4 \text{ kHz} \text{ and } 2.2^{\circ} \text{ at } 102.4 \text{ at } 102.4 \text{ at } 102.4 \text{ at } 102.4 $		$_{c}$ f _L (~1.1° at f _L r DC setting); l for DC setting); Hz to 204.8 kHz kHz and 25° at	
Sound Intensity Phase (only for using intensit	Match y filter)	Complies with IEC using Brüel &	1043 standard Cla & Kjær Sound Inte	ass 1 and ANSI S nsity Probes (0.0	1.12–199 17° @ 501	95 Class Hz)	1
	Channels Matched	3 and 4			1 an	d 2	
	Frequency Range	Guaranteed Phase M	latch	Guaranteed F Match	Phase	Туріса	I Phase Match
	50 Hz – 250 Hz	±0.017°		±0.017°			±0.005°
	250 Hz – 2.5 kHz	0.017°×(f/250)		0.017°×(f/250) ±0.00		±0.005°	
	2.5 kHz – 6.4 kHz	±0.17°		±0.17° ±0.08°		±0.08°	
Common Mode Rejection	on			7 mV – 7 V 2 Input Range Input		22 V Input Range	
		Guaranteed		Guaranteed	Турі	cal	Typical
	0 – 120 Hz	40 dB, 50 dB at DC		70 dB	70 dB 80 dB		50 dB
	120 Hz – 1 kHz	40 dB		55 dB	60 c	βB	50 dB
	1 kHz – 25.6 kHz			30 dB	40 c	βB	40 dB
Absolute Max. Commo	n Mode Voltage	±15 V _{peak} without damage		±5V _{peak} without damage			
		±1.5 V _{peak} without clipping ±3 V _{peak} without clipping			bing		
		If common mode voltage exceeds in order to prevent damage. Max max. "without damage" common	the max. value, c imum is 100 mA. mode value	are must be taker The instrument w	n to limit th ill limit the	ie signal voltage	ground current to the stated
Anti-aliasing Filter				Freq. Range ≤2	25.6 kHz	Freq. R	ange >25.6 kHz
attenuation of those	Filter Type	3rd order Butterwor	th	31	rd order B	utterwor	th
cause aliasing	-0.1 dB @	25.6 kHz		25.6 kHz			102.4 kHz
		100 kHz		100 kHz			400 kHz
Supply for Microphone	Siope	-18 dB/octave	abannal	+14.0\/	-18 dB/	octave	abannal
Supply for Microphone	Supply for Microphone Preamplifiers		±15.0 V, max. 10 mA per channel ±14.0 V, max. 20 mA per channel				
Supply for DeltaTron/IC	P [®] /CCLD		4 mA from	24 V source			
Tacho Supply (on BNT connectors)			6.5 V, ma	x. 100 mA			
Analog Special Functions Microphone Charge Injection Calibration (depending on softw Analog Self-test: Functional Check Transducers: Supports IFFE 1451.4 canable transducers with s		nding on software	support) dardised T	EDS			
Transducers: Supports IEEE 1451.4 capable transducers with standardised TEDS Overload Detection Signal overload CCLD overload: Detection of cable break or short-circuit + detection of CCLD transducer fault Microphone preamplifier overload: Detection of microphone preamplifier current cons high or too low Common mode voltage overload (Type 3110 only)			er working point				

Specifications – Output Channels, Standard 24-bit and Dyn-X

		Standa 7537/37-	rd 24-bit A/39/39-A	Dy 7538/38-	/n-X -A/40/40-A			
Output Connector		1 × BNC						
Output Coupling			DC					
Signal Ground Coupling	9		Floating or grou	unded to chassis				
DA Conversion			24	-bit				
DC Offset		≤1 mV @ 25	$5^{\circ}C^{\circ}$ and $\leq 10 \text{ mV}$ @ full term	nperature range (-60 dB re	e max. output)			
Output Voltage Range			1 μV _{peak}	– 7 V _{peak}				
Output Impedance			50	Ω				
Frequency Range			0 Hz —	25.6 kHz				
Frequency Response re	e 1 kHz		±0.1 dB, 1 mł	Hz to 25.6 kHz				
Frequency Accuracy			0.00)25%				
Waveform		7537, 7537 A	7539, 7539 A	7538, 7538 A	7540, 7540 A			
		Sine only	Software determined Arbitrary waveforms up to 2 Msamples	Sine only	Software determined Arbitrary waveforms up to 2 Msamples			
Amplitude Linearity @ '	1 kHz		Тур	bical				
0 te	o 60 dB below full scale		±0.	1 dB				
60 to	100 dB below full scale	±0.2 dB						
Noise		Guaranteed	Typical	Guaranteed	Typical			
μV _{rms} (nV/√Hz)		<30 (<188)	20 (125)	<30 (<188)	20 (125)			
Harmonic and Spurious Distortion Products	0 – 25.6 kHz	< 80 dB re full range out gre	tput or $1\mu\text{V}$, whichever is eater	< 80 dB re full range out gre	tput or $1\mu\text{V}$, whichever is eater			
Absolute Amplitude Pre	ecision	Guar	anteed	Guaranteed				
	@ 23°C, 1 kHz, 1 V _{rms}	±0.	.1 dB	±0	.1 dB			
Crosstalk		Guaranteed	Typical	Guaranteed	Typical			
between any generator output and any	0 – 2 kHz	-100 dB	-114 dB	-100 dB	–114 dB			
channel on any module	2 kHz – 25.6 kHz	-85 dB	–110 dB	-85 dB	–110 dB			
Common Mode Rejection	on	Guar	anteed	Guar	anteed			
	1 Hz – 1 kHz	Hz 60 dB 60 dB) dB			
Max. Common Mode Voltage			5 V _{peak} , D	C – 80 MHz				
		If common mode voltage exceeds the max. value, care must be taken to limit the signal ground curr in order to prevent damage. Maximum is 100 mA. The instrument will limit the voltage to the state max. "without damage" common mode value			the signal ground current he voltage to the stated			
Reconstruction Filter	Туре		Sixth order	Butterworth				
Attenuatio	on of mirror frequencies	encies >80 dB						

Specifications – Output Channels, Types 3109 and 3110

	3109	311	0		
Output Connector	2 × BNC	1 × B	1 × BNC		
Output Coupling	DC				
Signal Ground Coupling	Floating or grounded to chassis				
DA Conversion	24-bit				
DC Offset		Output Level	DC Offset		
		7 mV _{peak} – 70 mV _{peak}	100 µV		
	_	$70\mathrm{mV}_{\mathrm{peak}} - 700\mathrm{mV}_{\mathrm{peak}}$	100 μV		
		$700\mathrm{mV}_{\mathrm{peak}} - 7\mathrm{V}_{\mathrm{peak}}$	1 mV		
Output Voltage Range	$7\mu V_{peak} - 7V_{peak}$	1μV _{peak} –	- 7 V _{peak}		
Output Impedance		50 Ω			
Frequency Range	0 Hz – 25.6 kHz	0 Hz – 10)2.4 kHz		
Frequency Response re 1 kHz	$\pm 0.1dB$, 1 mHz to 25.6 kHz	±0.1 dB, 1 mHz – 25.6 kHz +0.1/–0.3 dB, 1 mHz – 102.4 kHz Typical: ±0.05 dB			
Frequency Accuracy	0.0025%				
Waveform	Software determined. Arbitrary waveforms up to 2 Msamples				

Specificatio	ons – (Output Channels,	Types 3109 and 3110 (continued)						
			3109		31	10			
Amplitude Line	earity @	1 kHz	Guaranteed	Guaranteed		Typical			
	0	to 60 dB below full scale	±0.1 dB	±0.1 dB		±0.05 dB	3		
	60 te	o 100 dB below full scale	±0.2 dB	±0.2 dB		±0.1 dB			
	100 te	o 120 dB below full scale	±0.5 dB	±0.5 dB		±0.2 dB			
	120 to 140 dB below full scale		±1.0 dB	±1.0 dB		±0.5 dB			
Noise			(10 Hz – 25.6 kHz)	(10 Hz – 25.6	kHz)	(10 Hz – 204.8 kHz)			
µv _{rms} (nV/√Hz)		Output Level	Guaranteed	Guaranteed T		Guaranteed	Тур.		
		$7\mathrm{mV}_\mathrm{peak} - 70\mathrm{mV}_\mathrm{peak}$	3 (19)	3 (19)	2.5 (16)	15 (34)	9 (20)		
		$70\mathrm{mV}_{\mathrm{peak}}$ – $700\mathrm{mV}_{\mathrm{peak}}$	20 (125)	10 (63)	5 (32)	50 (111)	20 (45)		
		700 mV _{peak} – 7 V _{peak}	200 (1250)	50 (313)	30 (188)	300 (664)	100 (222)		
Harmonic and Spurious Disto	ortion	0 – 25.6 kHz	< 80 dB re full range output or 1 µV, whichever is greater	< 80 dB re full ra gr	ange out eater, at	put or $1 \mu V$, which $10 k\Omega$ load	ever is		
Products		25.6 – 102.4 kHz	_	<70 dB re full ra	ange out gre	out or 1μ V, which ater	ever is		
		Typical @ 1 kHz		100	dB re ful	l range output			
Absolute Amp	litude Pr	ecision	Guaranteed	Guarantee	ed	Typical			
		@ 23°C, 1 kHz, 1 V _{rms}	±0.05 dB	±0.05 dB		±0.005 dB	В		
		@ 1 kHz, 1 mV – 7 V _{peak}	±0.1 dB	±0.1 dB		±0.05 dB	3		
Crosstalk			Guaranteed	Guarantee	ed	Typical			
between genera output and any	ator	0 – 2 kHz	-100 dB		-				
channel on any	module	2 kHz – 25.6 kHz	-85 dB	-		-			
		0 – 102.4 kHz	_	 120 or better 90 dB re max voltage whicher greater (work 	r than . input ever is rse)	–150 dB	3		
Common Mode	e Rejecti	on	Guaranteed	Guaranteed		Typical			
		1 Hz – 1 kHz	50 dB	50 dB		50 dB			
		1 kHz – 25.6 kHz	40 dB	24 dB		30 dB			
		25.6 kHz –102.4 kHz	-	10 dB		20 dB			
Max. Common	Mode V	oltage	1 V _{peak} , DC – 4 MHz 10 V _{peak} , 4 MHz – 80 MHz	5'	5 V _{peak} , DC – 80 MHz				
Reconstruction	n Filter	Туре	Seventh order Butterworth	Six	th order	Butterworth			
	Attenuat	tion of mirror frequencies	>8() dB					
Monitor Outpu	t	Connectors			2 ×	BNC			
		Output Level		$2.236V_p$ for full	scale inp	out in any range, ±	:0.05dB		
		Output Impedance			50	Ω			
		Harmonic Distortion		0 – 25.6 25.6 kHz – 10		lz: < –90 dB 4 kHz: < –80 dB			
		DC Offset (Max.)		Input Ran	ge	DC Offset (M	Max.)		
				7.071 mV	/	150 mV			
			None	22.36 mV	/	50 mV			
			None	70.71 mV	/	15 mV			
				223.6 mV	/	5 mV			
				707.1 mV	/	1.5 mV			
				2.236 V		0.5 mV			
				7.071 V		0.5 mV			
				22.36 V		0.5 mV			
		Signal Output		From last ampl after	ifier befo analog h	re anti-aliasing filt igh-pass filters	ter, but		

LAN Interface

CONNECTOR

RJ45 (10baseT/100baseTX) connector complying with IEEE-802.3 100baseX

PROTOCOL

TCP/IP

ACQUISITION PERFORMANCE

Data Transfer Rate (No. of Channels \times Bandwidth) from Frontend via LAN Interface, per frame:

16- and 24-bit modules/channels can be mixed

460.8 kHz (24-bit data transfer), 691.2 kHz (16-bit data transfer). This corresponds approximately to:

	No. of Channels ^a				
(kHz)	24-bit (460.8 kHz)	16-bit (691.2 kHz)			
25.6	18	27 ^b			
12.8	36	54			
6.4	72	96 ^c			

a. If one or more Type 3030, 3109 or 3032 is included in the system, performance is reduced to 409.6 kHz, for example, 16 channels to 25.6 kHz

b. If Type 7533 is included, 6 channels to 25.6 kHz (153.6 kHz)

c. Theoretically, 108 channels, but limited by max. number of channels in one frame

100 MBit LAN can comfortably support a data transfer rate of 1200 to 1400 kHz, so for large systems with multiple frames, Gigabit LAN may be required for both PC card and Ethernet switch

Data Transfer Rate via WLAN

Up to 600 kHz (16-bit data transfer) for IEEE 802.11g, 54 MBit connection, dependent on local transmission conditions

Multiframe Control

This must only be connected to other BNC Multiframe Control Sockets in Type 7536 or 7537

Aux

AUXILIARY I/O

Number of Input Channels: 12^a

Input Connector: 1 × High density 20-pole D-sub **Sampling Rate:** 10 samples per second (no internal anti-aliasing filters)

Input Connections: Single-ended

Input Voltage Ranges: Six input ranges from 0.1 V to 31.6 V in 10 dB steps

Input Protection: 50 V

Input Impedance: $1 M\Omega \parallel < 200 pF$

Precision:

Range	Precision
31.6 V	$\pm 0.5\%$ of reading $\pm 20mV$ offset
10 V	$\pm 0.5\%$ of reading $\pm 7mV$ offset
3.16 V	$\pm 0.5\%$ of reading $\pm 7mV$ offset
1 V	$\pm 0.5\%$ of reading $\pm 4mV$ offset
316 mV	$\pm 0.5\%$ of reading $\pm 2mV$ offset
100 mV	$\pm 0.5\%$ of reading $\pm 2mV$ offset

COMPATIBILITY WITH EXISTING TYPE 7536 LAN MODULES

Type 7536 100 MBit LAN modules, hardware version 12.0 and greater, are compatible and calibrated

Type 7536, hardware version 11.02 and serial number 2352315 – 2352340 of version 12.0, are compatible but need recalibration Type 7536, hardware version 11.02, will not function properly without a simple hardware modification (less than 25 units affected). There is a potential for damage if these modules are used for Auxiliary Logging without the modification

RS-232 Interface

RS-232 OUTPUT

Fulfils EIA-562 (electrical) and EIA-574 (mechanical)

OUTPUT SUPPLY

5 V, max. 50 mA

 a. 16 input channels (12 currently supported in software) plus 2 output channels which allow simple on/off control

Ordering Information – PULSE Systems 3560-B, 3560-C, 3560-D, 3560-E

		56 6, 6666 B, 6666 E	
3560-В	3560-C	3560-D	3560-E
 Type 3560-B: Compact PULSE Also includes the following accessories: ZG-0429: Mains Supply/Battery Charger AN-xxxx: Mains Cable for ZG-0429 (xxxx: country dependent) AO-0546: Power Supply Cable for in-car use 	Consists of: Type 2827: Portable Data Acquisition Unit Also includes the following accessories: • ZG-0429: Mains Supply/Battery Charger • AN-xxx: Mains Cable for ZG-0429 (xxxx: country dependent) • AO-0546: Power Supply Cable for in-car use • DD-0552: Protection Cover • DH-0541: Shoulder Strap	Consists of: KK-0050: Enclosure incl. Fan Unit Type 2826: Power Supply Also includes the following accessories: • ZG-0430: Mains Supply • AN-xxxx: Mains Cable for ZG-0430 (xxxx: country dependent) • AQ-0647: DC Supply Cable (Battery to Type 2826) • DH-0541: Shoulder Strap	Consists of: WU-0516: 19" Rack Mounting Kit Type 2826: Power Supply Also includes the following accessories: • ZG-0434: Mains Supply • AN-xxxx: Mains Cable for ZG-0434 (xxxx: country dependent) Requires: • UH-1037: 19" Fan Unit (Height: 1 standard rack-mounting unit)
System Options			
Any PULSE software - see the System	m Data for PULSE software (BU 0229)		
5-channel PULSE Data Acquisition Units Standard Type 3560-B-010: LEMO Type 3560-B-020: BNC Type 3560-B-030: LEMO, Generator Type 3560-B-040: BNC, Generator Dyn-X Type 3560-B-110: LEMO Type 3560-B-120: BNC Type 3560-B-130: LEMO, Generator Type 3560-B-140: BNC, Generator	One Controller Module from: Standard • Type 7536: Controller Module • Type 7537: 5/1-ch. Input/Output Cor • Type 7537-A: 5/1-ch. Input/Output Cor • Type 7539-A: 5/1-ch. Input/Output Cor Dyn-X • Type 7538: 5/1-ch. Input/Output Cor • Type 7538: 5/1-ch. Input/Output Cor • Type 7540: 5/1-ch. Input/Output Cor • Type 7540-A: 5/1-ch. Input/Output Cor	ntroller Module (LEMO) Controller Module (BNC) Introller Module with Generator (LEMO) Controller Module with Generator (BNC) Introller Module (LEMO) Controller Module (BNC) Introller Module with Generator (LEMO) Controller Module with Generator (BNC)	
	One Input/Output Module from: Standard • Type 3038: 12-ch. Input Module • Type 3039: 6-ch. Input Module • Type 3039: 5-ch. Input Module • Type 3109: 4/2-ch. Input/Output Module • Type 3110: 2/1-ch. Input/Output Module • Type 3105: 6-ch. Charge & CCLD Input Module • Type 3035: 6-ch. Charge & CCLD Input Module • Type 3041: 6-ch. Input Module • Type 3041: 8-ch. Input Module • Type 3041: 8-ch. Input Module • Type 3040: 12-ch. Input Module • Type 3040: 12-ch. Input Module	Up to Five Input/Output Modules from: Standard • Type 3038: 12-ch. Input Module • Type 3038-B: 12-ch. Input Module • Type 3039-B: 6-ch. Input Module • Type 3039-B: 6-ch. Input Module • Type 3109: 4/2-ch. Input/Output Module • Type 3110: 2/1-ch. Input/Output Module • UA-1365: Blank Module Dyn-X • Type 3035: 6-ch. Charge & CCLD Input Module • Type 3041: 6-ch. Input Module • Type 3040-B: 12-ch. Input Module • Type 3040-B: 12-ch. Input Module • Type 3040-B: 12-ch. Input Module • UA-1365: Blank Module	Up to Eight Input/Output Modules from: Standard • Type 3038: 12-ch. Input Module • Type 3038-B: 12-ch. Input Module • Type 3039-B: 6-ch. Input Module • Type 3039-B: 6-ch. Input Module • Type 3109: 4/2-ch. Input/Output Module • Type 3110: 2/1-ch. Input/Output Module • UA-1365: Blank Module Dyn-X • Type 3035: 6-ch. Charge & CCLD Input Module • Type 3041: 6-ch. Input Module • Type 3041: 6-ch. Input Module • Type 3040-B: 12-ch. Input Module • Type 3040-B: 12-ch. Input Module • Type 3040-B: 12-ch. Input Module • UA-1365: Blank Module
Optional Accessories	•		
 UA-1689: Handle for Type 3560-B UA-1590: Battery Charger and Holder (2×) QB-0048: Battery, NiMH DR35 AQ-0643: Power Cable for 12V devices, max. 1A Types 3560-B-010, -030, -110, -130 AO-0090: 7-pin LEMO to BNC male (1.2 m) for floating ground AO-0091: 7-pin LEMO to BNC female (1.2 m) for floating ground JJ-0081: BNC Adaptor, female to female 	 UA-1590: Battery Charger and Holder (2×) QB-0048: Battery, NiMH DR35 UA-1556: Notebook Mounting Kit UA-1572: 19" Rack Mounting Kit for Type 2827 AQ-0643: Power Cable for 12 V devices, max. 1A KE-0439: Suitcase for Type 3560-C and PC 	 AQ-0643: Power Cable for 12 V devices, max. 1 A AQ-0656: Power Supply Cable with car service plug for 3560-D UA-1556: Notebook Mounting Kit 	 KQ-0155: 19" Rack Enclosure EA-0540: Air Guide UH-1037: 19" Fan Unit (Height: 1 standard rack-mounting unit)
Services			
 3560-B-CAF: Portable PULSE Accredited Calibration 3560-B-CAI: Portable PULSE Accredited Initial Calibration 3560-B-CTF: Conformance test of 3560-B with certificate and meas- ured values 3560-B-EW1: Extended Warranty for 3560-B, one year extension 	 3560-C-CAF: Portable PULSE Accredited Calibration 3560-C-CAI: Portable PULSE Accredited Initial Calibration 3560-C-CTF: Conformance test of 3560-C with certificate and meas- ured values 3560-C-EW1: Extended Warranty for 3560-C, one year extension 	 3560-D-CAF: Portable PULSE Accredited Calibration 3560-D-CAI: Portable PULSE Accredited Initial Calibration 3560-D-CTF: Conformance test of 3560-D with certificate and meas- ured values 3560-D-EW1: Extended Warranty for 3560-D, one year extension 	 3560-E-CAF: Portable PULSE Accredited Calibration 3560-E-CAI: Portable PULSE Accredited Initial Calibration 3560-E-CTF: Conformance test of 3560-E with certificate and meas- ured values 3560-E-EW1: Extended warranty for 3560-E, one year extension
 3560-SI1: Installation and Configura 3560-HL1: 3560 Software and Hard Accredited calibration (CAF), Accred appending the letters to the type nu 	tion (at Brüel Kjær) ware Support. One year of Helpline Su dited Initial Calibration (CAI) and Confor Imber, for example, 3109-CTF. For furth	oport mance Test (CTF) are also available fo er information, please contact your loca	r individual input/output modules by I Brüel&Kjær representative

ACCESSORIES FOR MODULES

7536, 7537, 7538, 7539, 7540, 7537-A, 7538-A, 7539-A, 7540-A	3035, 3038, 3039, 3040, 3041, 3038-В*, 3039-В*, 3040-В*, 3041-В*, 3109, 3110
ACCESSORIES INCLUDED	
 AO-1449: LAN Interface Cable crossover with RJ45 (1m) AO-1451: RS-232 Cable for PULSE Controller Module JJ-0152: BNC T-connector UA-1617: LAN Cable Relief 	Type 3035: • 6 × JP-0162: TNC to 10-32 UNF Plug
OPTIONAL ACCESSORIES	
 Types 7537, 7538, 7539, 7540 only AO-0090: 7-pin LEMO to BNC (1.2m) for Floating GND AO-0091: 7-pin LEMO to BNC female (1.2m) for floating gnd. JJ-0081: BNC Adaptor, female to female For Auxiliary Parameter Logging AO-1472: 37-pin D-sub to Aux I/O AO-0594: 16 BNC Female to 37-pin D-sub AO-0595: 37-pin D-sub converter cable for DATAQ DI-75B AO-1488: Aux Cable, 12 Input BNC + 2 Output BNC, 1.0m (3.3ft) max.+70°C (158°F) 	 Type 2647: Charge to CCLD Amplifier JP-0145: BNC to 10-32 UNF Plug Adaptor AO-0526: 4-pin Microtech to 3 × BNC Cable 3 × BNC to multiplug for triaxial transducers WB-1497: 20 dB Attenuator Types 3038-B, 3039-B, 3040-B, 3041-B only AO-0535: 37-pole D-sub to 6 Microdot for accelerometers AO-05602: 37-pole D-sub to 6 × 7-pin LEMO (allows CIC and polarization voltage with Type 3038-B) AO-0603: 37-pole D-sub to 6 × BNC Socket WB-1482: 0/20 dB Attenuator Adaptor for D-Sub connector
*Note: The following adaptors should not be used with polarization voltage e AO-0432: 37-pole D-sub to 6 × 3-pin LEMO WL-1261: 37-pole D-sub to 6 × 7-pin LEMO WL-1291: 37-pole D-sub to 6 × BNC Plug	AO-0562: 37-pole D-sub to STSF/Beamforming Array WL-1271: 37-pole D-sub to 6 × BNC Socket
SOFTWARE Please refer to the System Data for PULSE software (BU 0229) NOTEBOOK PCS ^a 7200-D-xxy Dell [®] Standard Notebook 7201-D-xxy Dell [®] High-end Notebook 7204-A-xx Crete ROCKY II Plus EX Ruggedized Notebook xx specifies country: DE, DK, ES, FR, GB, IT, RU, SE, US u creating inclusion of Microart [®] Office Prov 1. est included: 2. included	PC ACCESSORIES UL-0200 Vehicle Adaptor (12 – 32 V) for Rocky II+ UL-0213 Dell [®] 17" Flat Panel Display TFT UL-0217 Dell [®] 19" Flat Panel Display TFT PC HARDWARE AO-1450 LAN Interface Cable with RJ45 UL-0167 Netgear [®] 8-port, 100 MBit Switch (220 V only) UL UL Dell [®] 19" Flat Panel Display TFT
y specifies inclusion of Microsoft [®] Office Pro: 1 – not included; 2 – included TOWER PCS^a 7202-D-xxy Dell [®] Optiplex GX280 Standard Desktop 7203-B-xxy Dell [®] Precision 690 High-end Tower PC xx specifies country: DE, DK, ES, FR, GB, IT, RU, SE, US y specifies inclusion of Microsoft [®] Office Pro: 1 – not included; 2 – included	A wide range of Brüel & Kjær Accelerometers, Microphones, Preamplifiers and Sound Intensity Probes is available for use with a Type 3560 system. The system supports IEEE 1451.4 capable transducers with standardised TEDS See also the PULSE Catalogue (BF 0209) for information on standard system configurations
a. PCs are constantly updated. Contact your local dealer for latest information.	comgarationo

Microsoft, Windows and Windows Vista are registered trademarks of Microsoft Corporation in the United States and/or other countries · ICP is a registered trademark of PCB Group · MATLAB is a registered trademark of The MathWorks, Inc. · SONY is a registered trademark of Sony Corporation · Intel, Intel InBusiness and Pentium are registered trademarks of Intel Corporation or its subsidiaries in the United States and/or other countries · HP and Omnibook are registered trademarks of Hewlett-Packard Company · Dell and Latitude are registered trademarks of Dell Computer Corporation · Neutrik is a registered trademark of the Neutrik Group worldwide · Netgear is a registered trademark of NetGear, Inc.

Brüel & Kjær reserves the right to change specifications and accessories without notice

HEADQUARTERS: DK-2850 Nærum · Denmark · Telephone: +45 4580 0500 Fax: +45 4580 1405 · www.bksv.com · info@bksv.com

 $\begin{array}{l} \label{eq:asymptotic} \mbox{Australia} (+61) 2\,9889-8888 \cdot \mbox{Australia} (+43) 1\,865\,74\,00 \cdot \mbox{Brazil} (+55) 11\,5188-8161 \\ \mbox{Canada} (+1) 514\,695-8225 \cdot \mbox{Chia} (+86) 10\,680\,29906 \cdot \mbox{Czech} \mbox{Republic} (+420) 2\,6702\,1100 \\ \mbox{Finland} (+358) 9-755\,950 \cdot \mbox{France} (+33) 1\,6990\,71\,00 \cdot \mbox{Germany} (+49) 421\,17\,87 0 \\ \mbox{Hong} \mbox{Kong} (+852) 2548\,7486 \cdot \mbox{Hungary} (+36) 1215\,83\,05 \cdot \mbox{Ireland} (+353) 1\,807\,4083 \\ \mbox{Italy} (+39) 0257\,68061 \cdot \mbox{Japan} (+81) 3\,5715\,1612 \cdot \mbox{Republic} \mbox{Grad} (+48) 22\,3473\,0605 \\ \mbox{Netherlands} (+31) 318\,55\,9290 \cdot \mbox{Norway} (+47)\,66\,77\,11\,55 \cdot \mbox{Poland} (+48) 22\,3473\,0605 \\ \mbox{Portugal} (+351) 24\,169\,040 \cdot \mbox{Singapore} (+66)\,37\,4512 \cdot \mbox{Slow} \mbox{Republic} (+241)\,25\,443\,0701 \\ \mbox{Spain} (+34) 91\,659\,0820 \cdot \mbox{Sweden} (+46)\,33\,225\,622 \cdot \mbox{Switzerland} (+41)\,44\,8807\,035 \\ \mbox{Taiwan} (+886)\,2\,2502\,7255 \cdot \mbox{United} \mbox{Kingdom} (+44)\,14\,38\,739\,000 \cdot \mbox{USA} (+1)\,800\,332\,2040 \\ \end{array}$

